44 research outputs found

    Multi-Channel Deep Networks for Block-Based Image Compressive Sensing

    Full text link
    Incorporating deep neural networks in image compressive sensing (CS) receives intensive attentions recently. As deep network approaches learn the inverse mapping directly from the CS measurements, a number of models have to be trained, each of which corresponds to a sampling rate. This may potentially degrade the performance of image CS, especially when multiple sampling rates are assigned to different blocks within an image. In this paper, we develop a multi-channel deep network for block-based image CS with performance significantly exceeding the current state-of-the-art methods. The significant performance improvement of the model is attributed to block-based sampling rates allocation and model-level removal of blocking artifacts. Specifically, the image blocks with a variety of sampling rates can be reconstructed in a single model by exploiting inter-block correlation. At the same time, the initially reconstructed blocks are reassembled into a full image to remove blocking artifacts within the network by unrolling a hand-designed block-based CS algorithm. Experimental results demonstrate that the proposed method outperforms the state-of-the-art CS methods by a large margin in terms of objective metrics, PSNR, SSIM, and subjective visual quality.Comment: 12 pages, 8 figure

    Space-time editing of elastic motion through material optimization and reduction

    Get PDF
    We present a novel method for elastic animation editing with space-time constraints. In a sharp departure from previous approaches, we not only optimize control forces added to a linearized dynamic model, but also optimize material properties to better match user constraints and provide plausible and consistent motion. Our approach achieves efficiency and scalability by performing all computations in a reduced rotation-strain (RS) space constructed with both cubature and geometric reduction, leading to two orders of magnitude improvement over the original RS method. We demonstrate the utility and versatility of our method in various applications, including motion editing, pose interpolation, and estimation of material parameters from existing animation sequences

    Anti-Inflammatory Effect of Feiyangchangweiyan Capsule on Rat Pelvic Inflammatory Disease through JNK/NF- ΞΊ

    Get PDF
    Objectives. In this study, we aimed to illustrate the preventive effect and possible mechanisms of Feiyangchangweiyan capsule (FYCWYC) on rat pelvic inflammatory disease (PID) model. Methods. To construct the rat PID model, upper genital tract was infected by multipathogen, and then drugs were orally administered for 8 days. The histological examination, immunohistochemical analysis, and ELISA were carried out. Furthermore, Western blotting was used to analyze the expression of Akt, MAPKs, NF-ΞΊB p65, and IΞΊB-Ξ± in uterus. Results. As the results showed, infiltrations of neutrophils and lymphocytes in uterus were significantly suppressed, and IL-1Ξ², IL-6, CXCL-1, and TNF-Ξ± were also reduced in a dose-dependent manner. We also found that FYCWYC inhibited apoptosis induced by infection. Furthermore, FYCWYC could block the infection-induced nuclear translocation of NF-ΞΊB. We found that FYCWYC treatment only decreased the phosphorylation of JNK induced by infection and had no effects on Akt and P38. Additional, the effects of SP600125, an inhibitor of phospho-JNK, were similar to the results of FYCWYC. Conclusions. Taken together, our results demonstrated that FYCWYC had anti-inflammatory effect in pathogen-induced PID model, and the mechanism might be through inhibiting NF-ΞΊB nuclear translocation which is mediated by JNK

    Effect of Salvianolic Acid b and Paeonol on Blood Lipid Metabolism and Hemorrheology in Myocardial Ischemia Rabbits Induced by Pituitruin

    Get PDF
    The purpose of this study was to determine the therapeutic effect of salvianolic acid b and paeonol on coronary disease. The ischemia myocardial animal model is induced by administering pituitrin (20 ΞΌgΒ·kgβˆ’1) intravenously via the abdominal vein. A combination of salvianolic acid b and paeonol (CSAP) (5, 10 and 15 mg/kg BW) was administrated to experimental rabbits. Biochemical indices were evaluated during six weeks of intervention. We found that the compound of salvianolic acid b and paeonol (5, 10 and 15 mg/kg BW) can markedly and dose-dependently reduce fibrinogen and malonaldehyde levels, increase the HDL level, improve blood viscosity and plasma viscosity in rabbits. In addition, the medicine can still reduce the ratio of NO/ET and the contents of lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) in a dose-dependent manner. This study demonstrates that compound of salvianolic acid b and paeonol (5, 10 and 15 mg/kg BW) can improve the blood hemorrheology, decrease oxidative injury and repair the function of blood vessel endothelium, and subsequently prevent the development of Coronary disease

    Proliferation-Attenuating and Apoptosis-Inducing Effects of Tryptanthrin on Human Chronic Myeloid Leukemia K562 Cell Line in Vitro

    Get PDF
    Tryptanthrin, a kind of indole quinazoline alkaloid, has been shown to exhibit anti-microbial, anti-inflammation and anti-tumor effects both in vivo and in vitro. However, its biological activity on human chronic myeloid leukemia cell line K562 is not fully understood. In the present study, we investigated the proliferation-attenuating and apoptosis-inducing effects of tryptanthrin on leukemia K562 cells in vitro and explored the underlying mechanisms. The results showed that tryptanthrin could significantly inhibit K562 cells proliferation in a time- and dose-dependent manner as evidenced by MTT assay and flow cytometry analysis. We also observed pyknosis, chromatin margination and the formation of apoptotic bodies in the presence of tryptanthrin under the electron microscope. Nuclei fragmentation and condensation by Hoechst 33258 staining were detected as well. The amount of apoptotic cells significantly increased whereas the mitochondrial membrane potential decreased dramatically after tryptanthrin exposure. K562 cells in the tryptanthrin treated group exhibited an increase in cytosol cyt-c, Bax and activated caspase-3 expression while a decrease in Bcl-2, mito cyt-c and pro-caspase-3 contents. However, the changes of pro-caspase-3 and activated caspase-3 could be abolished by a pan-caspase inhibitor ZVAD-FMK. These results suggest that tryptanthrin has proliferation-attenuating and apoptosis-inducing effects on K562 cells. The underlying mechanism is probably attributed to the reduction in mitochondria membrane potential, the release of mito cyt-c and pro-caspase-3 activation

    Nrf2 Expression Is Regulated by Epigenetic Mechanisms in Prostate Cancer of TRAMP Mice

    Get PDF
    Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is a transcription factor which regulates the expression of many cytoprotective genes. In the present study, we found that the expression of Nrf2 was suppressed in prostate tumor of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice. Similarly, the expression of Nrf2 and the induction of NQO1 were also substantially suppressed in tumorigenic TRAMP C1 cells but not in non-tumorigenic TRAMP C3 cells. Examination of the promoter region of the mouse Nrf2 gene identified a CpG island, which was methylated at specific CpG sites in prostate TRAMP tumor and in TRAMP C1 cells but not in normal prostate or TRAMP C3 cells, as shown by bisulfite genomic sequencing. Reporter assays indicated that methylation of these CpG sites dramatically inhibited the transcriptional activity of the Nrf2 promoter. Chromatin immunopreceipitation (ChIP) assays revealed increased binding of the methyl-CpG-binding protein 2 (MBD2) and trimethyl-histone H3 (Lys9) proteins to these CpG sites in the TRAMP C1 cells as compared to TRAMP C3 cells. In contrast, the binding of RNA Pol II and acetylated histone H3 to the Nrf2 promoter was decreased. Furthermore, treatment of TRAMP C1 cells with DNA methyltransferase (DNMT) inhibitor 5-aza-2β€²-deoxycytidine (5-aza) and histone deacetylase (HDAC) inhibitor trichostatin A (TSA) restored the expression of Nrf2 as well as the induction of NQO1 in TRAMP C1 cells. Taken together, these results indicate that the expression of Nrf2 is suppressed epigenetically by promoter methylation associated with MBD2 and histone modifications in the prostate tumor of TRAMP mice. Our present findings reveal a novel mechanism by which Nrf2 expression is suppressed in TRAMP prostate tumor, shed new light on the role of Nrf2 in carcinogenesis and provide potential new directions for the detection and prevention of prostate cancer

    Multi-Channel Deep Networks for Block-Based Image Compressive Sensing

    No full text

    Synthesis and Cytotoxicity Evaluation of Naphthalimide Derived N-Mustards

    No full text
    A series of N-mustards, which was conjugated to mono- or bis-naphthalimides with a flexible amine link, were synthesized and evaluated for cytotoxicity against five cancer cell lines (HCT-116, PC-3, U87 MG, Hep G2 and SK-OV-3). Several compounds displayed better activities than the control compound amonafide. Further evaluations by fluorescence spectroscopy studies and DNA-interstrand cross-linking assays revealed that the derivatives showed both alkylating and intercalating properties. Among the derivatives, the bis-naphthalimide N-mustard derivative 11b was found to exhibit the highest cytotoxic activity and DNA cross-linking ability. Both 11b and 7b induce HCT-116 cell apoptosis by S phase arrest
    corecore